ttpa TRANSPORT AND TRAFFIC PLANNING ASSOCIATES

Suite 502, Level 5, 282 Victoria Avenue Chatswood NSW 2067 T (02) 9411 5660 | F (02) 9904 6622 E info@ttpa.com.au | ttpa.com.au

Established 1994

Proposed GenesisCare Medical Facility Cnr Kellicar Road & Camden Road, Campbelltown Traffic and Parking Assessment

Ref: 21009 October 2021 Date: Rev: F

Table of Contents

1.0		1
2.0	PROPOSED DEVELOPMENT SCHEME	2
	2.1 Site, Context and Existing Circumstances2.2 Proposed Development	2 2
3.0	ROAD NETWORK AND TRAFFIC CONDITIONS	5
	3.1 Road Network	
	3.2 Traffic Controls	
	3.3 Traffic Conditions	
	3.4 Transport Services	7
4.0	PARKING	
5.0	ACCESS AND TRAFFIC	10
6.0	INTERNAL CIRCULATION AND SERVICING	13
7.0	ISSUES	14
8.0	CONCLUSION	17

List of Figures

Figure	1	Location
		-

- Figure 2 Site
- Figure 3 Road Network
- Figure 4 Traffic Controls
- Figure 5 Existing Peak Traffic Volumes
- Figure 6 Future Peak Traffic Volumes

List of Appendices

- Appendix A Development Plans
- Appendix B Traffic Survey Results
- Appendix C SIDRA Results
- Appendix D Turning Path Assessment

1.0 Introduction

This report has been prepared to accompany revised plans for a Development Application to Campbelltown City Council for a proposed medical facility for GenesisCare on the corner of Kellicar Road and Camden Road at Campbelltown (Figure 1).

The population in the South Western Metropolitan Area is increasing rapidly and there is a corresponding increased demand for services including hospital and medical facilities. The existing large vacant site on the corner of Narellan Road, Kellicar Road and Camden Road has good access to public transport services, the arterial road system and the major residential precincts in the Region.

The proposed GenesisCare medical facility will be a comprehensive cancer centre with:

- 2 Bunker radiation oncology
- Medical oncology
- Clinical trials
- Medical imaging
- Wellness and Outpatient services

The purpose of this report is to:

- describe the site, it's context and the revised development scheme
- describe the road system serving the site and the existing traffic circumstances
- assess the adequacy of the proposed on-site parking provision
- * assess the potential traffic implications of the development
- assess the suitability of the proposed vehicle access, internal circulation and servicing arrangements
- respond to traffic and parking issues raised in relation to the submitted Development Application

2.0 Proposed Development Scheme

2.1 Site, Context and Existing Circumstances

The site (Figure 2) occupies a triangular shaped area of some 4,741m² with frontages to Camden Road, Kellicar Road and Narellan Road in the southern part of the Campbelltown Town Centre.

The nearby uses include:

- * The Macarthur Square retail centre on the western side of Narellan Road
- The large Catholic Club on the southern side of Kellicar Road
- * The Council Library and vacant land on the eastern side of Camden Road
- * The large Campbelltown Mall and Town Centre extending to the north-east

The site is largely vacant grassland with some perimeter trees at the present time.

2.2 Proposed Development

It is proposed to clear the site and provide level platforms for the new building and hardstand areas. The proposed 4 level building comprises:

- 2 bunker radiation oncology
- Medical oncology
- Clinical trials
- Medical imaging
- Wellness and Outpatient services

Total floor area: 3,242m² GFA (2,796m² NLA)

An at-grade carpark will provide a total of 63 parking spaces with vehicle accesses on the Camden Road frontage. As part of the development scheme, it is proposed to modify the existing carriageway geometry of Camden Road at the site frontage and reactivate the traffic signals to provide full controlled access at the Kellicar Road/Hurley Street intersection (as previously existed prior to construction of the northern Narellan Road railway over the bridge).

The projected operational circumstances for the development are based on the GenesisCare experience at their numerous other facilities with allowance for the larger proposed floor area at Campbelltown. The projected staff, shift and patient details are as follows:

	•	,
6.30am – 4.30pm		1 – 2 (2)
7.00am – 5.00pm		3
7.00am – 3.00pm		8
8.00am – 6.00pm		15
9.00am – 5.00pm		20
10.00am – 6.00pm		8
Total:		56

Staff / Shift Time (maximum)

<u>Note</u>: Details of the nature/function of the various staff are provided in the Statement of Environmental Effects

Patients	Average per Day	Maximum
7.00am – 5.00pm (1 hour stay)	30	55
8.00am – 6.00pm (1/2 hour stay)	45	80
7.00am – 5.00pm (4 ½ hour stay)	20	30
7.00am – 6.00pm (1 hour stay)	25	40
Total:	120	205

<u>Note</u>: All patients will have timed appointments and these will be "managed" to ensure a "metered" arrival and departure. Accordingly, the approximate arrival/departure rate of patients is as follows:

Average	10 per hour
Maximum	18 per hour

Details of the proposed development are provided on the revised plans prepared by Team 2 Architects for the Development Application which are reproduced in part in Appendix A.

3.0 Road Network and Traffic Conditions

3.1 Road Network

The existing road network serving the site (Figure 3) comprises:

- M31 Hume Motorway a State Road and part of the arterial route link between Sydney and Melbourne
- Narellan Road a State Road and arterial route linking between Campbelltown and Narellan
- Appin Road / Moore Oxley Bypass a State Road and arterial route linking between Appin and Glenfield
- Blaxland Road / Gilcrist Drive a Regional Road and sub-arterial route linking between Campbelltown and Leumeah
- Kellicar Road / Hurley Street a State / Regional Road and major collector route running along the western side of the Town Centre
- Camden Road a minor collector road connecting between Kellicar Road / Hurley Street and Oxley Moore Bypass with a dead-end section to the northwest of Kellicar Road

3.2 Traffic Controls

The existing traffic controls which have been applied to the road system in the vicinity of the site (Figure 4) include:

- The traffic signal control at the Kellicar Road / Camden Road / Hurley Street intersection which includes:
 - prohibition of the right turn movement from Hurley Street
 - restriction of access for the northern arm of Camden Road to left turn IN/OUT only

Details of this existing intersection arrangement and the former arrangement (prior to the closure of Camden Road) are provided and the traffic signal design plans reproduced overleaf

The traffic signals at the Narellan Road / Kellicar Road intersection

Details if this existing intersection arrangement are provided on the traffic signal design plan reproduced overleaf

- The roundabouts along Camden Road and traffic signals at the Moore Street intersection
- The NO STOPPING restrictions along Hurley Street, Kellicar Road and Narellan Road in the vicinity of the site
- The bus stops on Hurley Street in the vicinity of the site

3.3 Traffic Conditions

An indication of the current traffic conditions on the road system serving the site is provided by data published by TfNSW and traffic surveys undertaken as part of this study. The TfNSW data is expressed in terms of Annual Average Daily Traffic (AADT) and is provided in the following:

	AADT
Narellan Road North of Kellicar Road	31,000

Traffic surveys have been undertaken at the intersections of Narellan Road / Kellicar Road and Kellicar Road / Hurley Street / Camden Road during the weekday AM and PM peak periods. The results of these surveys are provided in Appendix B and summarised in Figure 5.

The results of SIDRA analysis of these intersections for the peak traffic periods are provided in Appendix C and summarised in the following while the criteria for interpreting SIDRA results is reproduced overleaf.

	DRAWN BY CADD DO NOT AMEND MANUALLY				DATE IN SERVICE : 1
V.1028	A PHASE B&D PHASES C PHASE		HURLEY HURLEY BURLEY STREET C1 93m Long C1 93m Long C1 93m Long C1 45m Long C1 45m Long		POSTSNGTHOFFSETREMARKS4.11.1EXISTING4.1-EXISTING4.11.4EXISTING4.1-EXISTING4.1-EXISTING4.10.9EXISTING4.11.0EXISTING4.11.1EXISTING4.11.1EXISTING
00.076.	(24 Introduces D PHASE)	C C C C C C C C C C C C C C C C C C C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KOSHIGAYA PARK PARK E4 17m Long E4 17m Long C1 17m Long	
20			A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8	$\begin{array}{c} C \text{ cond } LS \\ \hline C c$	OAD
	DETECTOR SPECIFICATION Detector Specifications A FN A(L) A(E3) A SG/PS Ā A DS - - - A-B-D1 Depart. & FN B(PR) D(PR) -	$\textcircled{C} \ cond \ LS \ A/B/D \ C \ cond \ LS \ A/B/D \ B/D \ C \ cond \ L \ A/B/D \ C \ cond \ L \ C \ cond \ C \ cond \ L \ C \ cond $	A A A A A A A A A	C Detectors Supply (Underground fuse pit) Controller	c of d spacing
	ApproachDSZ-Z-Z-Z+Image: constraint of the state of the	VACANT LOT A-B-D2 Detectors A-B-D1 Detector One additional arrow at standard spacing		CATHOLIC CLUB NOTES 1. This site is SCATS linked. 1. This site is SCATS linked. 2. Special regulatory STOP sign (R1-4) 3. Audio tactile push buttons are provided. 3. Audio tactile push buttons are provided. 4. Kerb ramps to be constructed at all push (make smooth junction between kerted. 5. Refer to drawings 0179.076.RC.250) is placed on post 9. ded on posts 4, 6, 7 and 9. pedestrian crossings b ramp and gutter).)1 for details of civil roadworks.
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	From PICTON From PICTON 186 Lown Continuou	Buoyun	SIGNAL TABLE GROUP TYPE A/B/D 3 B/D (RT) 39 Timed red arrow protect C cond LS -	DISPLAY SEQUEN REMARKS - ction for A pedestrians. Z- filter option nt on C WALK introduction.
	A ORIGINAL ISSUE JINO SW1441 6/19/14 DISSUE JINO SW1441 6/19/14 DISSUE JINO SW1441 6/19/14 FALTER: FLAN TO MICROSTATION FORMAT, PHASING TO SUIT ONSITE FORMAT, PHASING TO SUIT ONSITE FORMAT, PHASING TO SUIT ONDERDAND (WESTERN APPROACH SM/1667 8/17/16 REFLECT CIVIL ROAD WORKS. B/1/98 B/1/98 RELLCAR RD (S) TO SUIT PROPOSED ONDERDON SURVEY. REMOVED: REFERENCES TO PUPARTER: BASE INFO USING SURVEY.	PUBLIC UTILITY LEGEND REFERENCE PLANS U.E HYDRANT SYMBOLS/ABBS. VD003-6 I.S.I. STOP VALVE STD POSIT VD001-5 CO GAS VALVE # PRES. DETECT VC005-17 DE SEWER MANHOLE 🟵 VEH. GROUP OP TS-TN-019 TELECOM PIT DET. LOGIC OP TS-TN-020 CH ELECT LIGHT POLE O PED. MOVEMNT OP TS-TN-021 STAY POLE O TELEPHONE BOX SURVEYOR : D. VANDERBURG TELECOM PILLAR 🕥 DATE : 26/08/07	3.D. Ref. Map 346 G6 G. E: 282 141 ORDS N: 1 228 466 SIGNED R. LUHR ECKED G. EYRE SITE CHECKED D. FOX 09/01/87 D. FOX 09/01/87 DATE Map 346 G6 THIS PLAN HAS BEEN TAKEN TO THE SITE ROAD A.G. KENNEDY C, D. FOX 09/01/87 DATE 09/01/87 DATE 09/01/87 DESIGN LAYC	S AND TRAFFIC AUTHORITY OF NSW AMPBELLTOWN COUNCIL AREA TRAFFIC SIGNALS AT KELLICAR ROAD, IDEN ROAD AND HURLEY STREET OUT CAMPBELLTOWN TCS NO 1028	EXISTING \Box CADD FILE: K:\Signals\To SCALE 5 0 FILE 76 TS 312 REGN. 7000.076
24/01/2011 11:40:42	AM K:\Signals\TCS\vv1000-vv1099\vv1028\VV1028_1E.dgn				

10/07/87

NCE

tion.

OF NSW		PROPOSED	3
ΞΛ	CADD FILE: K:\Signals\TCS\\V\	/1028_1E.dgn	
-~	SCALE 5 0 (1:200)	5 10	ISSUE
	FILE 76 TS 312	SUPERSEDES SHEET/ISSUE 1/D	E
REET	REGN.		SHEET
TCS No 1028	7000.076.VV.	1028	1

	Α	Μ	P	М
	LOS	AVD	LOS	AVD
Narellan/Kellicar	С	33.2	С	39.6
Kellicar/Camden	А	13.4	В	14.7

These results indicate that these intersections operate with a generally satisfactory level of service at the present time. Although there is some queuing during the afternoon peak along Kellicar Road into Hurley Street from the Narellan Road intersection.

3.4 Transport Services

The development site is conveniently located to both rail and bus services with Campbelltown Railway station located some 1Km to the north while numerous bus services (17) run along Hurley Street adjacent to the site. These bus routes operate between Campbelltown and suburbs such as Blair Athol, Narellan, Ambarvale, Appin, Wollongong, Bradbury, Airds, Wedderburn, Menangle, Camden and Glen Alpine (see details overleaf).

Criteria for Interpreting Results of SIDRA Analysis

1. Level of Service (LOS)

LOS	Traffic Signals and Roundabouts	Give Way and Stop Signs
'A'	Good	Good
'B'	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
'C'	Satisfactory	Satisfactory but accident study required
'D'	Operating near capacity	Near capacity and Accident Study required
'E'	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode
'F'	Unsatisfactory and requires additional capacity	Unsatisfactory and requires other control mode

2. Average Vehicle Delay (AVD)

The AVD provides a measure of the operational performance of an intersection as indicated on the table below, which relates AVD to LOS. The AVD's listed in the table should be taken as a guide only as longer delays could be tolerated in some locations (ie inner city conditions) and on some roads (ie minor side street intersecting with a major arterial route).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabouts	Give Way and Stop Signs
А	Less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode

3. Degree of Saturation (DS)

The DS is another measure of the operational performance of individual intersections.

For intersections controlled by **traffic signals** both queue length and delay increase rapidly as DS approaches 1, and it is usual to attempt to keep DS to less than 0.9. Values of DS in the order of 0.7 generally represent satisfactory intersection operation. When DS exceeds 0.9 queues can be anticipated.

For intersections controlled by a **roundabout or GIVE WAY or STOP signs**, satisfactory intersection operation is indicated by a DS of 0.8 or less.

4.0 Parking

Council's DCP specifies the following parking provision in relation to normal medical centre type uses:

Medical Centre / Health Consulting Room	-	1 space per 35m ² GFA
Other Health Services	-	on merits

The principal difference between a normal medical centre and the proposed GenesisCare facility is that patients at medical centres include casual "walk in" visitations whereas patient visits at GenesisCare are strictly for timed appointments only. Also, the proposed 2 radiation bunkers involve a significant floorspace not found in medical centres which have minor staff/patient presence (i.e. for the floor area involved).

Parking demands are also influenced by proximity to public transport services and in this regard the existing GenesisCare facility at Kingswood provides a very comparable circumstance to the proposed Campbelltown site.

Detailed questionnaire surveys have been undertaken at the Kingswood facility in relation to the arrival/departure travel mode characteristics of staff and patients. The results of these surveys are summarised in the following:

Travel Mode		
	Staff	Patients
Drive/n and Park	65%	61%
Car Pool	5%	N/A
Set-down/Pick-up	6%	11%
Other (taxi etc.)	1.5%	5%
Train	12.5%	15%
Bus	10%	8%
Total:	100%	100%

Application of this data to the projected staff and patient numbers at Campbelltown would indicate the following parking demands:

Staff (max)	56 @ 65% - 36.4 spaces (say 40)
Patients	
Maximum at one time	33 @ 61% - 20.1 spaces (say 25)
Average at one time	21 @ 61% - 12.8 spaces (say 15)

On this basis, it is apparent that the worst possible case concurrent on-site parking demand could be some 65 spaces and it is proposed to provide a total of 63 spaces including:

- 3 accessible spaces
- 4 elec. charge spaces
- 29 staff spaces
- 34 visitor spaces

It is apparent that the proposed parking provision will be adequate for the projected maximum staff and patient characteristics of the proposed facility.

5.0 Access and Traffic

Access

The principal essential element of vehicle access for the proposed development is the reactivation of the traffic signals controlling the northern arm of Camden Road at the Kellicar Road/Hurley Street intersection.

This was a major intersection prior to the construction of the Narellan Road railway overpass and the constructed left turn slip lanes etc were synonymous to that circumstance.

Council has indicated a desire to achieve a desirable urban streetscape outcome with the development and it is proposed to narrow the carriageway and details of the proposed access intersection, traffic signal arrangement and phasing are provided on the diagram overleaf.

Vehicle access for the site itself will comprise an ingress only driveway midway along the Camden Road frontage and a combined ingress/egress driveway at the northern end of the site. These driveways will comply with the design requirements of AS2890.1 & 2 and there will be good sight distances available.

Traffic

The former RMS undertook a consultant study of the traffic and parking characteristics of Medical Centres in 2015. However, the sites surveyed were only relatively small (i.e. $210m^2$ to $1,361m^2$ GFA – average $720m^2$ GFA) as indicated on the extract overleaf.

These sites are distinctly different to GenesisCare facilities particularly as the great majority did not have access to a railway station besides being of a totally different size and function to the proposed GenesisCare facility (e.g. "Walk In" patients rather than only by appointment, very ill patients requiring serious medical procedures and therefore not self-drive etc).

TCS 1028	A PHASE	B & G PHASES (Z+ Introduces G Pha MOVEM	C PHASE ASE) ENTS	D/F1 PHASES	D/F2 PHASES
					3.5
					3.5 3.2 3.2
					CONCE
	A ORIGINAL ISSUE			PUBLIC UTILITY LEGENE HYDRANT STOP VALVE GAS VALVE SEWER MANHOLE COMMS PIT ELECT LIGHT POLE POWER POLE STAY POLE TELEPHONE BOX COMMS PILLAR	REFERENCE PLANS SYMBOLS/ABRVS VD003-6 STD POSN CMPT VD001-5 INSTL STOP DET VC005-17 VEH GROUP OP TS-TN-019 IDET LOGIC OP TS-TN-020 PED MVT OP TS-TN-021 ○ INSURVEYOR: ???? IDATE: ????

				,		
	U.B.D. Ref. Map 346 G6	DESIGN APPROVAL	TFNSW RECOMMENDATION	TFNSW ACCEPTANCE		
	I.S.G. E: 282 141	\//∬ APPROVED	ROAD DESIGN ENGINEERING	ACCEPTED		
╞	CO-ORDS N : 1 228 466					CAMPBELLTOWN COUNCIL AR
_	DESIGNED: J. SINGH	NAME R. NETTLE	NAME	NAME		
_	CHECKED : M. KONG	POSITION DIRECTOR	DATE	POSITION		TRAFFIC SIGNALS AT
	M. KONG	DATE <u>27.09.2021</u>	NETWORK OPERATIONS	DATE		KELLICAR ROAD,
_	SITE CHECKED	DESIGN PREPARED BY		ACCEPTED BY		CAMDEN ROAD AND HURLEY ST
	B. LO		NAME POSITION	SECTION	DEGLONILLAN	
	RECOMMENDED		DAIE	SECTION	DESIGN LA	

POSTS								
POST	TYPE	LENGTH	OFFSET	REMARKS				
1	2	4.1	1.0	NEW				
2	2	4.1	1.0	NEW				
3	2	4.1	1.0	NEW				
4	2	4.1	1.0	NEW				
5	2	4.1	1.0	NEW				
6	5S	-	1.0	NEW				
7	2	4.1	1.0	NEW				
8	2	4.1	-	NEW				
9	2	4.1	1.1	NEW				
10	2	4.1	1.0	EXISTING				
11	2	4.1	-	EXISTING				
40	0	4.4	10	EVICTING				

/ALES	EXISTING	PROPOSED]
	CADD FILE: VV1028_CONCEPT.DWG		
LA	SCALE 5 0 (1:200)	5 10	ISSUE
	FILE SF0000/000000	SUPERSEDES SHEET/ISSUE 1/E	?
REET	REG No. DS0000/000000	TCS NO. 1028	SHEET ?
	Revision 7 - August 2021	C COPYRIGHT TRANSPO	ORT FOR NSW

Assessment of projected staff and patient details (see P3) indicates the following projected arrival and departure by car for the morning and afternoon network peak periods

	AM	(vtph)	PM	(vtph)
	8 –	9am	5 –	6pm
	IN	OUT	IN	OUT
Staff	27	-	-	28
Patients	18	15	15	11
Total:	45	15	15	39

It is understood that there is the potential for development to occur on the vacant site on the opposite side of Camden Road, however details of this potential development are not known at this time. This site is a similar size to the subject site and has the potential for a similar or comparable development outcome. For the purposes of providing a robust assessment an identical peak traffic generation outcome has been adopted for incorporation in the assessment.

The projected distribution of the total generated movements is as follows:

			AM		PM
		IN	OUT	IN	OUT
Narellan Road North	30%	27	9	9	22
Narellan Road South	20%	18	6	6	14
Camden Road	40% IN / 30% OUT	36	9	9	28
Hurley Street	10% OUT	-	3	-	7
Kellicar Road West	10%	9	3	6	7
	Total	120) vtph	108	8 vtph

The projected future peak traffic movements with the proposed and potential developments with access on Camden Road are shown on Figure 6. These projected future traffic circumstances have been assessed with the north-western arm of Camden Street reincorporated into the traffic signal control (SDO phasing) and the results are provided in Appendix C and summarised in the following:

	Α	Μ	P	М
	LOS	AVD	LOS	AVD
Narellan/Kellicar	D	52.1	D	43.1
Kellicar/Camden	В	22.2	В	26.4

The results indicate that these intersections will continue to have a satisfactory operational performance with the proposed / envisaged developments and the modified traffic signal control at the Camden Road intersection.

Table 2.1 Details of the selected survey sites (continued on the next page).

					Sydne	y sites				
Site ID	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10
Name of the development	The Mosman Practice	Crows Nest Medical Practice	Five Dock Medical Centre	Riverstone Family Medical Practice	Dural Medical Centre	Hunters Hill Medical Practice	Broadway General Practice	Sans Souci Medical Practice	Balmoral Street Medical Centre	Barwell Medical Centre
Site address	393 Military Road, Mosman NSW 2088	Suite 1a/375 Pacific Highway, Crows Nest NSW 2065	150 Great North Road, Five Dock NSW 2046	10 Pitt Street, Riverstone NSW 2765	535 Galston Road, Dural NSW 2158	6 Ryde Road, Hunters Hill NSW 2110	M105 Level 1 Broadway Shopping Centre, 1 Bay Street Broadway, Sydney NSW 2007	420/410/422 Rocky Point Road, Sans Souci NSW 2219	98 Balmoral Street, Hornsby NSW 2077	Suite 16, 7/9 Barwel! Avenue, Castle Hill NSW 2154
Day and date of survey(s)	Mon, 01/06/15	Mon, 09/03/15	Thu, 19/03/15	Sat, 28/02/15 Mon, 02/03/15	Thu, 05/03/15 Sal, 07/03/15	Fri, 13/03/15	Wed, 04/03/15	Sat, 21/03/15 Mon-Fri, 23-27/03/15	Sun, 15/03/15 Mon, 16/03/15	Fri, 06/03/15 Sun-Tue, 8-12/03/15 Sat, 14/03/15 Wed-Thu, 25- 26/03/2015
Duration of survey - frontage road	7:00-19:00	7:00-19:00	7:00-19:00	Set 7:30-13:00 Mon 7:00-19:00	Thu 7:00-19:00 Sat 7:00-13:30	7;30-19;00	7:00-19;00	Sat 7:00-13:00 Mon-Frî 7:00-19:00	7:00-19:00	Mon-Thu 7:30-18:30 Fri 7:00-19:00 Sat-Sun 8:30-13:30
Duration of survey - site trip generation	7:00-19:00	7:00-19:00	7:00-19:00	Sat 8:00-13:00 Mon 7:00-19:00	Thu 7:00-19:00 Sat 7:00-13:30	8:00-18:00	8:00-19:00	Sat 8:00-13:00 Mon-Fri 8:00-18:00	. 7:00-19:00	Mon-Thu 8:00-18:00 Fri 8:00-17:00 Sat 8:00-13:00 Sun 9:00-13:00
Surrounding area characteristics	Town centre	inner suburb	Inner suburb	Outer suburb	Outer suburb	Inner suburb	Town centre	Inner suburb	Town centre	Town centre
Surrounding land uses	Low-medium density residential, scattered commercial.	Low-medium density residential.	Low density residential.	Commercial / retail and low density residential.	Commercial / retail and low density residential.	Low density residential,	Commercial / retail. Located within a shopping centre.	Commercial / retail and low-medium residential.	Low density residential developments.	Commercial / retail and low-medium residential.
Frontage road - AM peak period (weekday)	7:00-8:00	8:00-9:00	8:15-9:15	10:00-11:00	7:45-8:45	8:45-09:45	9:15-10:15	multi-day ¹	7:45-8:45	multi-day
Frontage road - PM peak period (weekday)	16:15-17:15	17:15-18:15	17:30-18:30	15:15-16:15	16:00-17:00	15:30-16:30	12:15-13:15	multi-day	16:15-17:15	multi-day
Development details:										
Total site area (m ²)	876	1726	424	720	909	1069	1361	2215	400	4979
Total GFA (m ²)	1194	300	848	210	235	804	1361	475	800	980
No. of rooms	23	9	12	5	5	14	14	11	12	12
No. of doctors	15	6	6	5	5	12	12	10	5	9
No. of total staff	29	10	13	11	8	16	18	15	6	14

*

.

¹ For detailed information please refer to the Trip Generation Surveys Medical Centres Data Report.

•

ę

Trip Generation Surveys-Medical Centres

TEF Consulting- ABN 65 092 476 143

~

٠

6.0 Internal Circulation and Servicing

Internal Circulation

The parking spaces and provision for manoeuvring will be entirely compliant with the design criteria of AS2890.1, and Council's DCP requirements, as such provision to circulation and manoeuvring will be quite satisfactory. The designated visitor parking bays will be 2,600 wide, the staff spaces will be 2,400 wide while the accessible bays will comply with AS 2890.6.

Servicing

Refuse will be removed from the loading bay by a contract collection service while delivery vehicles will also be able to use this bay. Details of the turning path assessment for these vehicles are provided in Appendix D.

7.0 Issues

Traffic and parking issues have been raised in a Council engaged peer review of the Traffic Report and a response from TfNSW. These issues are identified and responded to in the following:

✤ Operational Hours

The facility will be licensed to operate 23 hours and the peak staffing times will be 6.30am to 6.00pm and the peak patient times will be 9.00am to 7.00pm.

* Comparable Facility

The Kingswood Genisis Care facility is entirely comparable due to:

- staffing/facilities
- socio demographic characteristics
- proximity to transport services

* Left Turn Slip Lanes

Left turn slip lanes will be retained for the turns into and out of Camden Street but with the geometry modified to comply with "high angle" design criteria.

* Assessment of Other Intersections

The assessed traffic generation of the proposed development during the road network peak periods is only 60 vtph in the AM and 54 vtph in the PM and a similar projection has been made for potential development of the site on the northern side of Camden Road even through there is no awareness of the nature of this development or if and when it might occur. Accordingly, such development would normally be subject to its own Development Application and Traffic Assessment if and when it occurs.

The generated traffic movements will be spread relatively evenly distributed over the available access road system and as such, any additional movements at the peripheral intersections will be quite minor and any impact on their operational performances will be entirely imperceptible particularly in any traffic modelling.

There is a roundabout on Hurley Street, however this is some 350m from the Camden Street intersection and is not subject to any delays or queuing. There is also a roundabout on Camden Street about 150m from the Hurley Street intersection, however this has very minor side street volumes and does not experience any delays or queuing.

* Ability for Vehicles to Turn Right From Camden Road to Kellicar Road

The projected right turn movement out of Camden Road in the afternoon peak is only 43 vph (Genisis development plus other assumed development).

For a circumstance of 140 second signal cycle length, this equates to 1.67 vehicles per cycle. It is acknowledged that the southbound through movement from Hurley Street to Kellicar Road queues through the Camden Road intersection in the afternoon peak at times however, this southbound movement is synchronised with the right turn movement from Kellicar Road to Narellan Road and the right turn movement out of Camden Road will precede the through movement and any temporary queuing that may occur at that time. It is apparent therefore, that the very minor right turn vehicle movements will have no difficulty in entering Kellicar Road. The location of traffic signals on arterial roads where peak hour queuing occurs is a very common circumstance which does not result in any adverse traffic implications.

Provision of Diamond Turn Phasing for Right Turn Movements from Kellicar Road and Hurley Street

There is simply no need to provide for a right turn movement from Hurley Street to Camden Road (currently prohibited) due to the very minor potential demand for this movement and the far more logical route via the Moore Oxley Bypass (see details overleaf).

* Split Pedestrian Crossing Across Kellicar Road

This proposal has been deleted.

* Dimensions of Parking Bays and Blind Aisles

The proposed arrangement of the parking area has been revised with designated visitor spaces 2,600 wide and staff spaces 2,400 wide to accord with AS 2890.1 and blind aisles have been deleted.

* Turning Paths

The swept paths diagrams have been revised to incorporate the "clearance lines".

* TfNSW Road Reservation

There was a long-established road reservation for a future bus corridor which affected the subject site and had been part of the discussions with TfNSW. However, by letter of 19.10.21 TfNSW advised Council that they would abandon this reservation (see details overleaf).

21009

Ross Nettle

Justine Kinch <justine.kinch@transport.nsw.gov.au></justine.kinch@transport.nsw.gov.au>
Tuesday, 19 October 2021 11:30 AM
Rebecca Grasso; Lindy Deitz
Pahee Rathan; Andy Sharp
RE: GenesisCare Development - Camden Road, Campbelltown
20211014 - TfNSW Letter to Council regarding Genesis Care development_final.pdf

Morning Rebecca and Lindy,

Transport is pleased to provide a response to your request regarding the road reservation on Camden Road that impacts the proposed Genesis Care development. Transport has reviewed your letter emailed on 11th October and agreed to abandon the corridor, I have also spoken with Andy Sharp earlier today to discuss our approach.

Regards and thanks for your patience.

OFFICIAL: Sensitive – NSW Government

Justine Kinch Western Parkland City Director Community + Place Greater Sydney Transport for NSW

M 0439 142 531 E justine.kinch@transport.nsw.gov.au

From: Kelly Wooden [mailto:kelly.wooden@campbelltown.nsw.gov.au] On Behalf Of Rebecca Grasso
Sent: Monday, 11 October 2021 10:04 AM
To: Justine Kinch <justine.kinch@transport.nsw.gov.au>
Cc: Pahee Rathan <Pahee.RATHAN@transport.nsw.gov.au>
Subject: GenesisCare Development - Camden Road, Campbelltown

CAUTION: This email is sent from an external source. Do not click any links or open attachments unless you recognise the sender and know the content is safe.

Good morning Justine,

Please see attached letter for consideration.

Kind regards

19 October 2021

TfNSW Reference: SYD21/00556/04 Council Reference: CNR-25235 – 2036/2021/DA-C

Lindy Dietz General Manager Campbelltown City Council PO Box 57 CAMPBELLTOWN NSW 2560

PROPOSED GENESIS CARE DEVELOPMENT AT THE INTERSECTION OF CAMDEN ROAD, HURLEY STREET AND KELLICAR ROAD, CAMPBELLTOWN

Dear Lindy,

Reference is made to your correspondence dated 11 October 2021, which was referred to Transport for NSW (TfNSW) for consideration.

As you stated in your letter, TfNSW and Council needs to work together to realise Council's vision for Campbelltown City Council and State government objective of providing safe and efficient public transport for Campbelltown Region as outlined in the Future Transport 2056. To that point and in recognition of the adoption of *Re-Imagining Campbelltown* and the current work we are collaborating on through the Place Based Strategy for Campbelltown we provide the following response to your proposal:

- To enable development of the site as proposed, TfNSW will need to abandon the existing road reserve on Camden Road. The alternate alignment presented on the Land Reservation Acquisition Plan (Project 936 SK011) would not meet requirements to construct a future bus connection under Narellen Road.
- TfNSW looks forward to continuing to work together to implement key actions of the Place-Based Transport Strategy.

Notwithstanding the above, TfNSW requires the applicant to address the traffic signal design requirements as part of the development application to ensure that the signalised intersection operates safely and efficiently. Details of the TfNSW requirements were outlined at the meeting on Friday 8 October 2021 with the applicant and Council. TfNSW will provide its requirements in writing to the applicant and Council shortly.

If you have any further questions please do not hesitate to contact either myself or Mrs Rachel Cumming, Director Land Use, on 02 8849 2077 or email rachel.cumming@transport.nsw.gov.au.

Transport for NSW 27 Argyle Street, Parramatta NSW 2150 | Locked Bag 5085, Parramatta NSW 2124 P (02) 8849 2666 | W transport.nsw.gov.au | ABN 18 804 239 602 I hope this has been of assistance.

Yours sincerely,

.

Justine Kinch Western Parkland City Director Community and Place
8.0 Conclusion

The assessment of the potential traffic, transport and parking implications of the proposed GenesisCare development scheme at Campbelltown has concluded that:

- there will not be any unsatisfactory traffic implications
- the proposed parking provision will be adequate for the needs of the development
- the proposed vehicle access, internal circulation and servicing arrangements will be suitable and appropriate
- the proposed modifications to the access intersection traffic signals and the geometry of the frontage section of Camden Road will be entirely suitable and appropriate.

Transport and Traffic Planning Associates

Appendix A

Development Plans

Proposed Site Plan - Overall - TfNSW Land Aquisition Scale: 1 : 500

936	As	@A1	
DA-C	indicate 111.1	ed	<u>Rev:</u>

Rev	Revision Description	Date
12 13 14	Preliminary Issue	29/04/2021
15	Sketch Issue - New Camden road overlay	10/05/2021
16	Preliminary Issue - Camden Road Update	14/05/2021
17 18	Preliminary Issue Preliminary Issue - GenesisCare Signoff	19/05/2021 20/05/2021
19 20	Preliminary Issue - Crossings removed DEVELOPMENT APPLICATION	21/05/2021 15/06/2021
21 22 23	DEVELOPMENT APPLICATION Revised Development Application	23/06/2021 29/06/2021 15/10/2021
24	Revised Development Application	20/10/2021
©Copyright 1 This drawing Copyright Ac	Feam 2 Architects is protected by copyright. All right are reserved. Unless pe t 1968. No part of this drawing may in any form or by any	rmitted under the means be
reproduced, copyright ow Construction	published, broadcast or transmitted without the prior writt ner. Please Note: If the status of this drawing is not signed it may be subject to change, alteration or amendment at th	en permission of the off For ne discretion of
Team 2 Archi whether spec result of your	tects. If so, Team 2 Architects is not liable for any loss, dan ial, consequential, direct or indirect, suffered by you or any use of this drawing for construction purposes.	nage, harm or injury / other person as a
	DRAWING LEGEND:	
1. Architectu and specifica	ral drawings shall be read in conjunction with other con- stions. Any discrepancies shall be referred to team 2 arc	sultant drawings chitects before
2. All dimens	sions and levels are in millimeters unless noted otherwise ined by scaling the drawing.	e. No dimension
 All dimens architects be All work to 	sions to be checked on site with any discrepancies referr fore proceeding with work. o be carried out in accordance with the requirements of	the principal
certifying au	thority, current ncc & australian standards.	
V = 1 S = 1	VISITOR PARKING SPACES 2600W	
	GenesisC	are
-		
	FDTIVON	
	LAILINN	
0	5 10 20	30
SC	ALE 1:500	
-		6
AF	RCHITEC	TS
SYDNEY 701/1 Cha	Indos Street, Suite 204/9-11 Cla	MELBOURNE aremont Street,
St Leonard T: + 61 2 E: info@t4	as NSVV 2065 South 9437 3166 ABN: eam2.com.au	rarra, VIC 3141 72 104 833 507
Reg NSW: Project:	9940	Reg Vic: 19340
Gene	sisCare Campbelltown	
Camp	belltown	
<u>Title:</u>		
SITE F		
<u>Project #:</u> 936	Scale: Drw:	Ckd:
		C DB
Drawing #:	As @A1 Ik indicated ^{Rev}	21
Drawing #:	5 As @A1 Ik DA-012	с <u>ов</u> 24

DRAWING STATUS: DEVELOPMENT APPLICATION

Transport and Traffic Planning Associates

Appendix **B**

Traffic Survey Results

TRANS TRAFFIC SURVEY

Date:	Thu 11/02/21	North:	Narellan Road	Survey	AM:	7:00 AM-9:00 AM
Neather:	Overcast	East:	Kellicar Road	Period	PM:	4:00 PM-6:00 PM
Suburban:	Kellcar	South:	Narellan Road	Traffic	AM:	7:45 AM-8:45 AM
Customer:	TTPA	West:	Kellicar Road	Peak	PM:	4:45 PM-5:45 PM

All Vehicles	s Ime	North	Approac	h Narellar	Road	East	Approact	Kellicar	Road	Sout	h Approac	h Narellan	Road	West	Approact	h Kellicar	Road	Houri	v Total
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	Hour	Peal
7:00	7:15	0	57	98	70	D	52	23	2	0	19	210	13	0	8	53	9	3185	
7:15	7:30	0	47	105	107	0	65	60	1	0	13	209	19	0	10	54	28	3522	1
7:30	7:45	0	75	106	144	0	78	41	2	0	13	235	14	0	13	90	28	3832	-
7:45	8:00	0	80	163	178	0	88	64	2	0	31	244	22	0	15	98	29	4111	Peal
8:00	8:15	0	43	182	172	0	82	69	1	D	12	214	23	0	33	89	31	4003	
8:15	8:30	0	72	178	178	0	78	79	0	0	31	204	26	0	24	130	28		
8:30	8:45	0	53	182	249	0	82	78	4	0	18	238	32	0	43	114	25		
8:45	9:00	0	46	123	221	0	75	69	3	0	11	199	24	0	34	76	25		
16:00	16:15	0	50	168	151	0	151	133	0	0	31	123	34	0	50	118	42	4117	
16:15	16:30	0	40	165	102	0	139	183	4	0	15	140	20	0	22	134	49	4203	1.2
16:30	16:45	0	53	199	112	0	155	153	3	0	18	173	12	0	29	106	51	4347	ri , ii
16:45	17:00	0	36	169	91	0	138	163	3	0	18	120	22	0	49	140	42	4393	Pea
17:00	17:15	0	80	200	121	0	143	185	1	0	21	143	27	0	35	117	64	4336	
17:15	17:30	0	79	217	118	0	128	183	2	0	23	147	25	0	48	142	45	1.1.1.1	
17:30	17:45	0	47	219	117	0	147	198	1	0	23	107	20	0	32	143	54	11 TH	1
17:45	18:00	0	39	161	104	0	128	172	7	0	18	112	16	0	24	109	44	n	
Peal	k Time	North	Approac	h Narella	Road	East	Approac	h Kellicar	Road	Sout	h Approac	h Narellan	Road	West	Approac	h Kellicar	Road	Peak	1
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	total	
7:45	8:45	0	248	705	777	0	330	290	7	0	92	900	103	0	115	431	113	4111	
18-45	17.45	0	242	805	447	0	656	720	7	0	96	517	0.4	0	164	E42	205	4202	

-ight venic	me	North	Approac	hNarallar	Road	Ens	tAnnroac	hKellicar	Road	Sout	h Annroar	h Narolian	Post I	Wast	Approact	Kallicar	Road	0
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	ř –
7:00	7:15	0	55	88	61	0	47	20	2	0	18	204	13	0	7	50	9	Č.
7:15	7:30	0	45	93	101	0	58	50	1	0	13	207	19	0	9	51	27	
7:30	7:45	0	72	96	137	0	73	40	2	0	13	228	14	0	13	83	25	1
7:45	8:00	0	80	154	171	0	80	59	1	0	31	233	22	0	15	90	26	
8:00	8:15	0	43	173	162	0	74	64	1	0	11	203	22	0	30	85	28	P .
8:15	8:30	0	69	171	172	0	67	71	0	0	31	195	25	0	24	128	27	01
8-30	8:45	0	50	181	245	0	80	72	4	0	18	220	32	0	43	00	21	
8:45	0.00	0	47	110	245	0	69	62	1	0	10	106	24	0	32	80	21	
18.00	40.45	0	45	110	211	0	150	104		0		195	24	0	32	09	2.0	
10:00	10,15	0	50	102	144	0	150	124	0	0	31	120	34	U	40	112	41	
16:15	16:30	0	39	159	100	0	130	1/2	4	U	14	139	20	0	22	127	49	
16:30	16:45	0	53	193	110	0	149	146	3	0	16	167	12	0	29	97	51	
16:45	17:00	0	36	168	89	0	137	156	3	0	18	113	22	0	48	130	41	
17:00	17:15	0	80	197	119	0	140	174	1	0	21	140	25	0	35	106	63	
17:15	17:30	0	78	209	113	0	127	178	2	0	23	143	24	0	48	138	42	
17:30	17:45	0	46	214	112	0	142	187	1	0	23	107	19	0	32	135	54	
17:45	18:00	0	38	157	103	0	128	162	7	0	18	108	10	0	24	100	44	
Peak	Time	North	Approac	h Narella	Road	Eas	t Approac	h Kellicar	Road	Sou	th Approa	h Narellan	Road	West	Approac	h Kellicar	Road	Pe
eriod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	to
7:45	8:45	0	242	679	750	0	301	266	6	0	91	860	101	0	112	402	102	39
eriod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	
7:00	7.15	0	2	5B 10	L	0	R	WB 2	L	0	R	NB	L	0	R	EB	L	
7.15	7:30	0	2	10	6	0	7	10	0	0	0	2	0	0		3	1	
7:30	7.45	0	1	10	7	0	5	1	0	0	0	7	0	0	0	7	3	
7.45	8.00	0	0	0	7	0		5		0	0	11	0	0	0		3	
7.40	0,00	0	0	9	10	0	0	5	1	0	0	10	0	0	0	0	3	
0.00	0:10	0	0	9	10	0	0	5	0	0	1	n	1	0	3	4	3	
0:10	0:30	0	3	1	0	0	11	0	0	0	0	9	1	Q	0	2		
6:30	8:49	0	3	- 1	4	U	2	0	U	U	U	9	0	0	0	15	4	
8:45	9:00	0	3	5	4	0	1	/	0	0	0	4	0	0	2	1	2	
16:00	16:15	0	0	6	7	0	1	9	0	0	0	3	0	0	2	6	1	
16:15	16:30	0	1	6	2	0	3	11	0	0	1	1	0	0	0	7	0	
16:30	16:45	0	0	6	2	0	6	7	0	0	0	6	0	0	0	9	0	
16:45	17:00	0	0	1	2	0	1	7	0	0	0	7	0	0	1	10	1	1
17:00	17:15	0	0	3	2	0	3	11	0	0	0	3	2	0	0	11	1	
17:15	17:30	0	1	8	5	0	1	5	0	0	0	4	1	0	0	4	3	1
17:30	17:45	0	1	5	5	0	5	11	0	0	0	0	1	0	0	8	0	
17:45	18:00	0	1	4	1	0	0	10	0	0	0	4	0	0	0	9	0	
Peak	Time	North	Approac	h Narella	n Road	Eas	t Approar	h Kellicar	Road	I Sou	th Approa	ch Narellan	Road	Wes	t Approac	h Kellicar	Road	I P
erlod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	I NB	L	U	R	EB	L	to
7:45	8:45	0	6	26	27	0	29	24	1	0	1	40	2	0	3	29	11	1
200.00	1 7 Y 4 E						10											

TRANS TRAFFIC SURVEY

Date:	Thu 11/02/21	North:	Camden Road	Survey	AM:	7:00 AM-9:00 AM
Weather:	Overcast	East:	Kellicar Road	Period	PM:	4:00 PM-6:00 PM
Suburban:	Kellcar	South:	Camden Road	Traffic	AM:	7:45 AM-8:45 AM
Customer:	TTPA	West:	Kellicar Road	Peak	PM:	4:45 PM-5:45 PM

TI	me	North	Approac	h Camder	Road	East	Approac	h Kellicar	Road	Sout	h Approac	h Camden	Road	West	Approac	h Kellicar	Road	Houri	y Total
Period Star	Period End	U	R	SB	L.	U	R	WB	L	U	R	NB	L	U	R	EB	L	Hour	Pea
7:00	7:15	0	0	0	1	0	0	47	2	0	15	0	30	0	28	114	0	1425	÷
7:15	7:30	0	0	0	0	0	0	93	3	0	18	0	33	0	25	149	0	1624	
7:30	7:45	0	0	0	0	0	0	87	5	0	13	0	34	0	29	218	0	1818	
7:45	8:00	0	0	0	0	0	0	122	4	0	16	0	32	0	39	267	1	2000	Pea
8:00	8;15	0	0	0	1	0	0	117	3	0	7	0	35	0	32	241	0	1993	
8:15	8:30	0	0	0	0	0	0	116	3	0	16	0	41	0	57	282	0		1
8:30	8:45	0	0	0	1	0	0	124	12	0	10	0	40	0	52	328	1		1
8:45	9:00	0	0	0	1	0	0	98	5	0	13	0	49	0	42	265	1		1
16:00	16:15	0	0	0	1	0	1	218	22	0	16	0	66	0	40	259	1	2403	1
16:15	16:30	0	0	0	0	0	0	239	30	0	15	0	87	0	56	195	0	2401	1.1
16:30	16:45	0	0	0	2	0	0	225	17	0	9	0	86	2	49	181	2	2400	
16:45	17:00	0	0	0	0	0	0	248	17	0	14	0	56	2	53	194	0	2491	Pea
17:00	17:15	0	0	0	0	0	0	225	18	0	16	0	104	2	52	205	0	2466	
17:15	17:30	0	0	0	0	0	0	244	17	0	8	0	69	0	49	234	0	12.14	
17:30	17:45	0	0	0	1	0	1	280	19	0	14	0	66	0	55	227	1	11	
17:45	18:00	0	0	0	111	0	0	234	15	0	5	0	73	1	55	174	1		1
Peak	Time	North	Approad	h Camder	Road	East	Approac	h Kellicar	Road	Sout	h Approac	h Camden	Road	West	Approac	h Kellicar	Road	Peak	1
Period Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	total	
7:45	8:45	0	0	0	2	0	0	479	22	0	49	0	148	0	180	1118	2	2000	1
16:45	17:45	0	0	0	1	0	1	997	71	0	52	0	295	4	209	860	1	2491	1

North

2....

ing is not to scale and no

TI	ime	North	Approad	h Camder	Road	East	Approac	h Kellicar	Road	Sout	th Approad	h Camden	Road	Wes	t Approac	h Kellicar	Road	1
erlod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	1
7:00	7:15	0	0	0	0	0	0	39	2	0	15	0	30	0	28	101	0	
7:15	7:30	0	0	0	0	0	0	77	3	0	18	0	32	0	24	141	D	
7:30	7:45	0	0	0	0	0	0	81	5	0	13	0	34	0	28	205	0	
7:45	8:00	D	0	0	0	0	0	108	3	0	16	0	32	0	38	253	1	1
8:00	8:15	0	0	0	1	0	0	106	2	0	7	0	33	0	31	227	0	1
8:15	8:30	0	0	0	0	0	0	100	2	0	16	0	38	0	57	274	0	
8:30	8:45	0	0	0	0	Ó	0	116	11	0	10	0	40	0	49	313	0	
8:45	9:00	0	0	0	1	0	0	85	4	0	12	0	48	0	40	256	1	
16:00	16:15	0	0	0	1	0	1	208	22	0	16	0	66	0	40	246	1	
16:15	16:30	D	0	0	0	D	0	225	30	0	15	0	87	0	54	187	0	
16:30	16:45	0	0	0	2	0	0	212	17	0	9	0	86	2	49	170	2	
16:45	17:00	0	0	0	0	0	0	240	17	0	14	0	56	2	52	183	0	1
17:00	17:15	0	0	0	0	0	0	211	17	0	16	0	104	2	52	192	0	1
17:15	17:30	0	0	0	0	0	0	238	17	0	8	0	69	0	48	226	0	
17:30	17:45	0	0	0	1	0	1	264	19	0	14	0	66	0	55	214	1	1
17:45	18:00	0	0	0	1	0	0	227	15	0	5	0	70	1	55	164	1	1
10000	1																	1
Peak acled Star	CTime Barlad End	North	Approac	h Camder	Road	East	Approac	h Kellicar	Road	Sou	th Approad	h Camden	Road	Wes	t Approac	h Kellicar	Road	Pe
7:45	B:45	0	0	0	1	0	0	430	18	0	40	IND 0	143	0	175	1067		10
16:45	17:45	0	0	0	1	0	1	953	70	0	52	0	295	4	207	815	1	23
eriod Star	Period End	U	R	SB	L	U	R	WB	L	Sou	R R	NB	Road	U	t Approac R	h Kellicar EB	Road	
7:00	7:15	0	0	0	1	0	0	8	0	0	0	0	0	0	0	13	0	
7:15	7:30	0	0	0	0	D	0	16	0	0	0	0	1	0	1	8	0	1
7:30	7:45	0	0	0	0	0	0	6	0	0	0	0	0	D	1	13	0	
7:45	8:00	0	0	0	0	0	0	14	1	0	0	0	0	0	1	14	0	
8:00	8:15	0	0	0	0	0	0	11	1	0	0	0	2	0	1	14	0	
8:15	8:30	0	0	0	0	0	0	16	1	0	0	0	3	0	0	8	0	1
8:30	8:45	0	0	0	1	0	0	8	1	0	0	0	0	0	3	15	1	1
8:45	9:00	0	0	0	0	0	0	13	1	0	1	0	1	0	2	9	0	
16:00	16:15	0	0	0	0	0	0	10	0	0	0	0	0	0	0	13	0	
16:15	16:30	0	0	0	0	0	0	14	0	0	0	0	0	0	2	8	0	1
16:30	16:45	0	0	0	0	0	0	13	0	0	0	0	0	0	0	11	0	1
16:45	17:00	Ó	0	0	0	0	0	8	0	0	0	0	0	0	1	11	0	1
17:00	17:15	0	0	0	0	0	0	14	1	0	0	0	0	0	0	13	0	1
17:15	17:30	0	0	0	0	0	0	6	Ó	0	0	0	0	0	1	8	0	1
17:30	17:45	0	0	0	0	0	0	16	0	0	0	0	0	0	0	13	0	
17:45	18:00	0	0	0	0	0	0	7	0	0	0	0	3	0	0	10	0	
	1		1								1	1						1
Peak	k Time	North	Approac	ch Camder	Road	East	Approac	h Kellicar	Road	Sou	th Approac	ch Camden	Road	Wes	t Approad	h Kellicar	Road	Pe
eriod Star	Period End	U	R	SB	L	U	R	WB	L	U	R	NB	L	U	R	EB	L	to
1:45	8:45	0	0	0	1	0	U	49	4	0	0	0	5	0	5	51	1	1 11
16:45	17:45	0	0	0	0	0	0	44	1	0	0	0	0	0	2	45	0	0

Transport and Traffic Planning Associates

Appendix C

SIDRA Results

NETWORK LAYOUT

🛉 Network: N101 [Existing]

New Network Network Category: (None)

SITES IN NE	TWORK	
Site ID	CCG ID	Site Name
B 1	NA	Narellan - Kellicar - Ex
2	NA	Camden - Hurley - Ex

SIDRA INTERSECTION 8.0 [Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Created: Tuesday, 19 October 2021 8:08:22 PM Project: T:WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 1 [Narellan - Kellicar AM - Ex]

中中 Network: N101 [Existing AM]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehic	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver, E Que	Back of	Prop. Queued	Effective Stop	Aver. /	Averag e
		Total	HV	Total	HV	vio			Vehicles	Distance		Rate	Cycles S	Speed
Sout	hEast: I	Narellian F	Road	venn	70		Sec		ven	, m				Km/n
1	L2	103	1.9	103	1.9	0.740	31.1	LOSIC	14.9	107.7	0.77	0.71	0.77	31.8
2	T1	900	4.4	900	4.4	0.740	26.0	LOS B	15.0	109.3	0.77	0.70	0.77	39.8
3	R2	92	1.1	92	1.1	0.437	63.9	LOS E	3.5	24.6	0.92	0.77	0.92	15.5
Appr	oach	1095	3.9	1095	3.9	0.740	29.7	LOS C	15.0	109.3	0.78	0.70	0.78	37.0
Nort	hEast: F	Gellicar Ro	ad			e de la compositione. En la compositione de la compositio		e. e		× •••	···/ · ·			
4	L2	7	14.3	7	14.3	0.511	52.5	LOS D	5.1	38.3	0.85	0.70	0.85	22.3
5	T1	290	8.3	290	8.3	0.511	47.5	LOS D	5.2	38.6	0.86	0.70	0.86	16.6
6	R2	330	8.8	330	8.8	0.734	61.5	LOS E	6.5	49.3	0.97	0.82	0.99	22.6
Appr	oach	627	8.6	627	8.6	0.734	54.9	LOS D	6.5	49.3	0.91	0.76	0.93	20.5
Nort	nWest:	Narellan R	oad					i de la		··· ·· .	· · · ·	1 - 1 - 1 <u>1</u>	• . •	نې بې د د د
7	L2	777	3.5	777	3.5	0.576	6.2	LOS A	1.3	9.7	0.05	0.58	0.07	50.1
8	T1	705	3.7	705	3.7	0.432	25.7	LOS B	8.3	59.7	0.61	0.53	0.61	40.3
9	R2	248	2.4	248	2.4	0.731	65.1	LOS E	9.8	70.0	0.97	0.85	1.01	23.0
Appr	oach	1730	3.4	1730	3.4	0.731	22.6	LOS B	9.8	70.0	0.41	0.60	0.43	38.7
Sout	hWest:	Kellicar Ro	bad	7			ч.			·. ·			 	
10	12	113	9.7	113	9.7	0.169	16.8	LOS B	1.2	9.3	0.28	0.64	0.28	41.0
11	T1	431	6.7	431	6.7	0.734	50.5	LOS D	8.2	60.9	0.94	0.79	0.96	11.0
12	R2	115	2.6	115	2.6	0.491	58.8	LOS E	4.2	29.9	0.89	0.77	0.89	20.8
Appr	oach	659	6.5	659	6.5	0.734	46.2	LOS D	8.2	60.9	0.82	0.76	0.83	17.9
All V	ehicles	4111	4.8	4111	4.8	0.740	33.2	LOS C	15.0	109.3	0.65	0.68	0.66	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	ement Performance - Pedes	trians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	verage Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P3	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	SouthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	edestrians	211	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 1 [Narellan - Kellicar AM - Ex]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, D, E, G, G2* (* Variable Phase)

Phase Timing Summary						
Phase	Α	D	E	G	G2	
Phase Change Time (sec)	0	56	80	108	130	
Green Time (sec)	50	18	22	16	4	
Phase Time (sec)	56	24	28	22	10	
Phase Split	40%	17%	20%	16%	7%	

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 5:27:13 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 2 [Camden - Hurley AM - Ex]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Bac Queue	k of	Prop. E Queued	ffective Stop	Aver. / No.	Averag e
		Total	HV	Total	HV			S. 5 6	Vehicles Dis	tance		Rate	Cycles S	peed
		veh/h	%	ven/h	%	v/c	Sec	S CARA	veh	m	62.2.3.5			km/h
South	East: (Camden R	oad	dia dia	· ·	1. T.		etter de la tra	· · ·					
1	L2	148	3.4	148	3.4	0.082	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	35.1
3	R2	49	0.0	49	0.0	0.092	61.9	LOS E	0.9	6.3	0.90	0.71	0.90	17.1
Appro	ach	197	2.5	197	2.5	0.092	19.6	LOS B	0.9	6.3	0.22	0.57	0,22	22.8
North	East; F	lurley Stre	et	n an	· . 	· 	1.12.1	1.11.	· · · · · ·	• .•	· ·		na na sana sa	
4	L2	22	18.2	22	18.2	0.018	6.2	LOS A	0.0	0.4	0.11	0.56	0.11	44.5
5	<u>T1</u>	479	10.2	479	10.2	0.255	35.2	LOS C	4.8	36.2	0.76	0.63	0.76	21.0
Appro	ach	501	10.6	501	10.6	0.255	33.9	LOS C	4.8	36.2	0.73	0.63	0.73	21.7
North	West:	Camden R	oad	in the Line L	1			· · · ·	1977 - 19	e je či			n gen Na ja san	
27	L2	2	0,0	2	0.0	0.002	7.0	LOS A	0.0	0.1	0.18	0.57	0.18	47.6
Appro	ach	2	0.0	2	0.0	0.002	7.0	LOS A	0.0	0.1	0.18	0.57	0.18	47.6
South	West:	Kellicar Ro	cad	n en	n in the Alaman		· · · · ·		inan in the second s					
30	L2	2	0.0	2	0.0	0.383	10,5	LOS A	6.1	44.1	0.29	0.26	0.29	47.4
11	T 1	1 1 18	4.6	1118	4.6	0.383	3.9	LOS A	6.1	44.1	0.23	0.21	0.23	52.1
12	R2	180	2.8	180	2.8	0.185	8.7	LOS A	1.0	7.1	0.21	0.61	0.21	33.9
Appro	ach	1300	4.3	1300	4.3	0.383	4.6	LOS A	6.1	44.1	0.23	0.27	0.23	49.9
All Ve	hicles	2000	5.7	2000	5.7	0.383	13.4	LOS A	6.1	44.1	0.36	0.39	0.36	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	ement Performance - Ped	estrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	werage Back Pedestrian ped	of Queue Distance m	Prop. I Queued S	Effective top Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	edestrians	105	64.3	LOS F	n an		0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 5:27:13 PM Project: T:WORK21/21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN/MODEL/Model 19OCT'21.sip8

Site: 2 [Camden - Hurley AM - Ex]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn (phase reduction applied) Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, C, D

Phase Timing Summary

Phase	Α	С	D
Phase Change Time (sec)	0	54	80
Green Time (sec)	48	20	54
Phase Time (sec)	54	26	60
Phase Split	39%	19%	43%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 5:27:13 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 1 [Narellan - Kellicar PM - Ex]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehio	cles									
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba	ick of	Prop.	Effective	Aver. /	Averag
		Total	HV	Total	HV		(in the second sec		Vehicles E)istance	Quedeo	Rate	Cycles S	Speed
		veh/h	%	veh/h	%	v/c	Sec		veh	m		2007 (S		ˈkm/h
Sout	hEast: I	varelllan R	oad	11 A. 14					and the	1.1	· .	e de la composition de	er er er	
1	L2	94	4.3	94	4.3	0.717	46.9	LOS D	10.6	76.2	0.91	0.81	1.03	25.0
2	T1	517	2.7	517	2.7	0.717	43.1	LOS D	11.0	78.9	0.91	0.79	0.97	32,7
3	R2	85	0.0	85	0.0	0.534	43.5	LOS D	2.4	17.0	0.97	0.76	0.97	20.3
Appr	oach	696	2.6	696	2.6	0.717	43.7	LOS D	11.0	78.9	0.92	0.79	0.97	30.7
North	nEast: k	ellicar Roa	ad	. • · ·					1.1.7					
4	L2	7	0.0	7	0.0	0.756	42.9	LOS D	12.0	87.6	0.83	0.74	1.21	25.7
5	T1	729	4.7	729	4.7	0.756	35.7	LOS C	12.3	89.5	0.84	0.74	1.03	20.2
6	R2	556	1.8	556	1.8	0.758	49.2	LOS D	10.2	72.5	0.92	0.83	0.93	25.9
Appr	oach	1292	3.4	1292	3.4	0.758	41.5	LOS C	12.3	89.5	0.87	0.78	0.99	23.4
North	West: I	Narellan R	oad	e e esta esta esta esta esta esta esta e	2			1 .	· · ·	· . ·	·	· · · · ·	- :	
7	L2	447	3.1	447	3.1	0.571	29.8	LOS C	10.3	74.2	0.66	0.83	0.81	30.8
8	T1	805	2.1	805	2.1	0.771	37.3	LOS C	12.6	90.0	0.94	0.83	0.97	35.0
9	R2	242	0.8	242	0.8	0.734	39.1	LOS C	6.2	43.7	0.98	0.84	1.01	30.3
Appr	oach	1494	2.2	1494	2.2	0.771	35.4	LOS C	12.6	90.0	0.86	0.83	0.93	33.3
Sout	hWest:	Kellicar Ro	bad		•	- • •	·, · · ·					$\frac{1}{2} = \frac{1}{2} + \frac{1}$		
10	L2	205	2.4	205	2.4	0.276	10.4	LOS A	1.1	8.1	0.25	0.64	0.25	46.2
11	T1	542	6.1	542	6.1	0.778	46.3	LOS D	10.2	75.5	0.94	0.81	0.96	11.8
12	R2	164	0.6	164	0.6	0.690	60.6	LOS E	6.4	44.8	0.95	0.81	0.96	20.4
Appr	oach	911	4.3	911	4.3	0.778	40.8	LOS C	10.2	75.5	0.79	0.77	0.80	20.6
	• • •				:		1.00		1 m 1 h			· · ·	5	
All V	ehicles	4393	3.1	4393	3.1	0.778	39.6	LOSC	12.6	90.0	0.86	0.80	0.93	27.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestri	ans						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Mov ID	Description	Demand Flow	Average Delay	Level of Aver Service Per	rage Back of destrian E	Queue Distance	Prop Queued 8	Effective Stop Rate
			580		Dec.			
Į P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0,96	0.96
P2	NorthEast Full Crossing	53	42.6	LOS E	0.2	0.2	0.92	0.92
P3	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	SouthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	edestrians	211	58.8	LOS E			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 1 [Narellan - Kellicar PM - Ex]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B*, C, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, B*, C, D, D2*, E, G, G2* (* Variable Phase)

Phase Timing Summary					1-4 - P - V 1-4 - P - V			
Phase	Α	В	C	D	D2	E	G	G2
Phase Change Time (sec)	0	25	37	52	76	86	118	130
Green Time (sec)	19	6	9	18	4	26	6	4
Phase Time (sec)	25	12	15	24	10	32	12	10
Phase Split	18%	9%	11%	17%	7%	23%	9%	7%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 8:23:57 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 2 [Camden - Hurley PM - Ex]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehic	les				1			inite (anti)erren (a) = 7 - 7 - 7 - 7		
Mov	Turn	Demand I	=lows	Arrival	Flows	Deg.	Average	Level of	Aver. Ba	ck of	Prop. Ef	fective	Aver /	Averag
		Total	HV	Total	ΗV	Sath	Delay	Service	Queu Vehicles D	e istance	Queued	Stop Rate	No. Gveles S	e ineed
014044		veh/h	%	veh/h	∽ %	v/c	sec		veh	m				km/h
Sout	hEast: (Camden R	oad											
1	L2	295	0.0	295	0.0	0.159	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	35.0
3	R2	52	0.0	52	0.0	0.098	62.0	LOS E	1.0	6.7	0.90	0.71	0.90	17.1
Appr	oach	347	0.0	347	0.0	0.159	14.1	LOS A	1.0	6.7	0.14	0.56	0.14	25.4
North	East: F	urley Stre	et j	· .	н. 1 с.									· .
4	L2	71	1.4	71	1.4	0.053	6.3	LOS A	0.2	1.7	0.14	0.58	0.14	44,8
5	T1	997	4.4	997	4.4	0.456	25.9	LOS B	10,5	76.4	0.72	0.63	0.72	25.4
Аррг	oach	1068	4.2	1068	4.2	0.456	24.6	LOS B	10.5	76.4	0.68	0.63	0.68	26.4
North	West:	Camden R	oad							187	X1.2.	·	-	
27	L2	2	0.0	2	0.0	0.002	6.5	LOS A	0.0	0.1	0.15	0.56	0.15	48.2
Appr	oach	2	0.0	2	0.0	0.002	6.5	LOS A	0.0	0.1	0.15	0.56	0.15	48.2
Souti	hWest:	Kellicar Ro	ad		· . ·	· · ·	· · · ·						· · ·	
30	L2	2	0.0	2	0.0	0.296	9.7	LOS A	3.9	28.4	0.24	0.22	0.24	49.1
11	T1	860	5.2	860	5.2	0.296	3.9	LOS A	3.9	28.4	0.23	0.21	0.23	52.1
12	R2	209	1.0	209	1.0	0.317	9.3	LOS A	1.1	7.6	0.24	0.62	0.24	33.2
Appr	oach	1071	4.4	1071	4.4	0.317	5.0	LOS A	3.9	28.4	0.23	0.29	0.23	48.8
All Ve	ehicles	2488	3.7	2488	3.7	0.456	14.7	LOS B	10.5	76.4	0.41	0.47	0.41	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D),

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestria	ns						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service I	verage Back. Pedestrian ped	of Queue Distance m	Prop Queued S	Effective top Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	destrians	105	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 8:23:57 PM Project: T:WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 2 [Camden - Hurley PM - Ex]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: Leading Right Turn (phase reduction applied) Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, C, D

In the Residence of the local division of the	the state of the second second	And in the second se	
P P P P	las lata	Summar	11.
			A. 1
	Contraction of the local division of the loc	A STATE OF A	P 2000

Phase	Α	C	D
Phase Change Time (sec)	0	73	99
Green Time (sec)	67	20	35
Phase Time (sec)	73	26	41
Phase Split	52%	19%	29%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 8:23:57 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWNMODEL\Model 19OCT21.sip8

NETWORK LAYOUT

中中 Network: N101 [Post Development]

New Network Network Category: (None)

SITES IN NE	SITES IN NETWORK											
Site ID	CCG ID	Site Name										
01	NA	Narellan - Kellicar - Fut										
8 2	NA	Camden - Hurley - Fut	į									

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Created: Tuesday, 19 October 2021 8:28:58 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 1 [Narellan - Kellicar AM - Fut]

∲∲ Network: N101 [AM Post [Development]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Mov	ement	Perform	ance	- Vehi	clés									
Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	Aver. E	Back of	Prop.	Effective	Aver. /	Averag
		Total	нν	Total	ΗV	Sau	Delay	Service	Vehicles	eue Distance	Queuea	Rate	Cvcles S	e Sneed
E.S.	500	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	hEast: N	arellian F	load		1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		·				Sala a Sa		:	
1	L 2	103	1.9	103	1.9	0.880	45.8	LOS D	19.7	142.5	0.95	0.92	1.17	25.6
2	T1	900	4.4	900	4.4	0.880	40.6	LOS C	19.9	144.7	0.96	0.92	1.10	33.6
3	R2	110	0.9	1 10	0.9	0.320	44.7	LOS D	3.3	23.1	0.74	0.74	0.74	20.0
Appr	oach	1113	3.9	1 1 13	3.9	0.880	41.5	LOS C	19.9	144.7	0.93	0.90	1.07	32.0
North	nEast: K	ellicar Ro	ad	·			-	ίλης.			an in the second se Second second			
4	L2	13	23.1	13	23.1	0.508	51.3	LOS D	5.1	38.1	0.84	0.69	0.84	22.4
5	T1	293	6.8	293	6.8	0.508	46.2	LOS D	5.3	39.4	0.84	0.69	0.84	16.9
6	R2	339	8.8	339	8.8	0.566	51.8	LOS D	5.9	44.2	0.86	0.78	0.86	25.1
Appn	oach	645	8.2	645	8.2	0.566	49.2	LOS D	5.9	44.2	0.85	0.74	0.85	22.0
North	West: N	larellan R	oad	• •									· · ·	
7	L2	804	3.7	804	3.7	1.007	68.2	LOS E	34.8	251.5	1.00	1.12	1.40	18.3
8	T1	705	3.7	705	3.7	0.700	50.0	LOS D	12.7	91.6	0.92	0.79	0.92	30.7
9	R2	248	2.4	248	2.4	0.906	52.0	LOS D	7.2	51.5	1.00	0.95	1.28	26.2
Appr	oach	1757	3.5	1757	3.5	1.007	58.6	LOS E	34.8	251.5	0.97	0.96	1.19	24.4
Sout	hWest: k	Kellicar Ro	bad				· .	tt die		. • *				- 1 t
10	L2	113	9.7	113	9.7	0.202	16.0	LOS B	1.2	9.0	0.43	0.67	0.43	41.5
11	T1	440	6.6	440	6.6	0.975	67.4	LOS E	11.7	86.4	1.00	0.99	1.25	8.6
12	R2	115	2.6	115	2.6	0.368	49.8	LOS D	3.7	26.2	0.79	0.75	0.79	23.0
Appr	oach	668	6,4	668	6.4	0.975	55.7	LOS D	11.7	86.4	0.87	0.90	1.03	15.6
		1			-						· ··· ·	1. 1. 1. 1.		
All Ve	enicles	4183	4.8	4183	4.8	1.007	52.1	LOS D	34.8	251.5	0.93	0.90	1.08	24.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Μον	/ement Performance - Pedes	trians						
Mov 1D	Description	Demand Flow ped/h	Average Delay sec	Level of Ave Service . Pe	rage Back o destrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P3	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	SouthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0,96	0.96
All F	odestrians	211	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 1 [Narellan - Kellicar AM - Fut]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, C, D, E, G, G1 Output Phase Sequence: A, C, D, E, G, G1

Phase Timing Summary		「「「「「			M. A.	
Phase	Α	С	D	E	G	G1
Phase Change Time (sec)	0	29	43	73	102	121
Green Time (sec)	23	8	24	23	13	13
Phase Time (sec)	29	14	30	29	19	19
Phase Split	21%	10%	21%	21%	14%	14%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 7:58:41 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 2 [Camden - Hurley AM - Fut]

中 Network: N101 [AM Post Development]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Mov	ement	Perform	ance	- Vehic	les									
Mov ID	Turn	Demand Total	Flows HV	Arrival F	lows HV	Deg. Satn	Average Delay	Level of Service	Aver. Ba Queu Vehicles D	ck of ie istarice	Prop. Queued	Effective Stop Rate	Aver. / No. Cycles S	Averag e Speed
Sout	hEast (veh/h Camden B	% beol	veh/h	%	V/C	SEC		veh	m			5 m	km/h
1	12	1/18	3 /	1/8	3.4	0.082	5.6	1094	0.0	0.0	0.00	0.52	0.00	25 1
2	T1	36	11 1	36	11 1	0.002	55.0	LOSA	1.0	10.0	0.00	0.55	0.00	30.1
2	22	40	0.0	10	0.0	0.152	53.9	LOSD	1.5	10.1	0.90	0.07	0.90	24.1
0	NZ	49	0.0	49	0.0	0.150	55.0	LOSD	1.7	11.9	0.85	0.72	0.85	19.0
Appr	oacn	233	3.9	233	3.9	0.150	23.3	LOS B	1.7	11.9	0.32	0.59	0.32	24.3
North	East: H	lurley Stre	eet											
4	L2	22	18.2	22	18.2	0.019	7.8	LOS A	0.1	1.2	0.21	0.58	0.21	42.5
5	T1	479	10.2	479	10.2	0.306	41.9	LOS C	5.2	39.6	0.83	0.68	0.83	18.7
Appr	oach	501	10.6	501	10.6	0.306	40.4	LOS C	5.2	39.6	0.80	0.68	0.80	19.4
North	West:	Camden F	Road											
7	L2	5	20.0	5	20.0	0.061	39.6	LOS C	0.4	2.9	0.88	0.65	0.88	34.1
8	T1	9	11.1	9	11.1	0.061	33.8	LOS C	0.4	2.9	0.88	0.65	0.88	30.8
9	R2	18	16.7	18	16.7	0.066	52.3	LOS D	0.6	4.9	0.85	0.68	0.85	22.4
Appr	oach	32	15.6	32	15.6	0.066	45.1	LOS D	0.6	4.9	0.86	0.67	0.86	26.5
Sout	hWest:	Kellicar R	oad											
10	L2	56	7.1	55	7.2	0.551	17.6	LOS B	13.4	97.5	0.51	0.50	0.66	44.2
11	T1	1118	4.6	1098	4.6	0.551	13.1	LOSA	13.4	97.5	0.57	0.53	0.66	39.6
12	R2	180	2.8	177	2.8	0.210	23.0	LOS B	4.5	32.3	0.68	0.75	0.68	21.6
Appr	oach	1354	4.4	1330 ^{N1}	4.4	0.551	14.6	LOS B	13.4	97.5	0.58	0.56	0.66	37.5
	ehicles	2120	6.0	2096 ^{N1}	6.1	0.551	22.2	LOS B	13.4	97.5	0.61	0.59	0.66	30.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ement Performance - Pede	strians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of A Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P41	SouthWest Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P42	SouthWest Stage 2	53	35.8	LOS D	0.1	0.1	0.92	0.92
All Pe	destrians	211	57.1	LOS E			0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2 [Camden - Hurley AM - Fut]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, D, F1 Output Phase Sequence: A, B, D, F1

Phase Timing Summary			a starten	n na la se
Phase	Α	В	D	F1
Phase Change Time (sec)	0	46	100	113
Green Time (sec)	40	48	7	21
Phase Time (sec)	46	54	13	27
Phase Split	33%	39%	9%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 7:58:41 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWNMODEL\Model 19OCT21.sip8

📱 Site: 1 [Narellan - Kellicar PM - Fut]

中中 Network: N101 [PM Post Development]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Мо	vement	Performa	ance	- Vehic	les						insina" sa 'slindski si _{sta} -			
Mov ID	Turn	Demand I	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. B	ack of	Prop.	Effective	Aver.	Averag
		Total veh/h	HV %	Total	HV %	vic	sec		Vehicles I	Distance	- aucucu	Rate	Cycles	Speed km/b
Sou	thEast: 1	Varellan R	oad	XATALARSE	HE HOURALITY									
1	L2	94	4.3	94	4.3	0.827	55.0	LOS D	11.4	82.3	0.98	0.90	1.15	22.6
2	T1	517	2.7	517	2.7	0.827	50.5	LOS D	12.7	91.2	0.98	0.89	1.09	30.3
3	R2	85	0.0	85	0.0	0.377	59,9	LOS E	3.1	21.5	0.89	0.76	0.89	16.3
App	roach	696	2.6	696	2,6	0.827	52.2	LOS D	12.7	91.2	0.97	0.87	1.07	28.0
Nor	lhEast: K	ellicar Roa	ad	,, ,	· · · · · · · · · · · · · · · · · · ·	in an			4. ⁻	e Al Al III		• • · · · · · · · · · · · · · · · · · ·		
4	L2	21	9.5	21	9.5	0.942	54.9	LOS D	15.8	115.0	1.00	0.96	1.13	21.7
5	T1	736	4.8	736	4.8	0.942	49.7	LOS D	15.8	1 15.0	1.00	0.96	1.13	16.0
6	R2	578	2.1	578	2.1	0.819	51.8	LOS D	11.2	79.6	0.95	0.85	0.99	25.1
Арр	roach	1335	3.7	1335	3.7	0.942	50.7	LOS D	15.8	115.0	0.98	0.91	1.07	20.7
Nor	thWest: I	Narellan R	oad	n gring. Na	· · · · · · · · · · · · · · · · · · ·	and and Salad	1,4 -			ent La stational				
7	L2	456	3.1	456	3.1	0.582	8.3	LOS A	2.5	18.3	0.17	0.63	0.22	47.5
8	T1	809	2.3	809	2.3	0.744	48.6	LOS D	14.8	105.4	0.92	0.81	0.92	31.1
9	R2	242	0.8	242	0.8	0.734	40.1	LOS C	6.4	45.2	0.98	0.84	1.01	30.0
Арр	roach	1507	2.3	1507	2.3	0,744	35.1	LOS C	14.8	105.4	0.70	0.76	0.72	33.4
Sou	thWest:	Kellicar Ro	ad			t da est. Se acest			1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		ang ang			
10	L2	205	2.4	205	2.4	0.281	10.9	LOS A	1.2	8.3	0.27	0.64	0.27	45.8
11	T 1	548	6.0	548	6.0	0.887	46.4	LOS D	13.0	95.5	0.98	0.89	1.06	11.7
12	R2	164	0.6	164	0.6	0.460	46.9	LOS D	5.2	36.3	0.79	0.77	0.79	23.9
Арр	roach	917	4.3	917	4.3	0.887	38.5	LOS C	13.0	95.5	0.79	0.82	0.84	21,3
AII \	/ehicles	4455	3.2	4455	3.2	0.942	43.1	LOS D	15.8	115.0	0.84	0.83	0.90	26.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	ement Performance - Pedes	trians			n annan agus ann agus an an ann an ann an an an ann an			
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Av Service P	erage Back of edestrian E ped	Queue listance m	Prop. Queued	Effective Stop Rate
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P3	NorthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	SouthWest Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
All Pe	edestrians	211	64.3	LOS F			0.96	0.96

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 1 [Narellan - Kellicar PM - Fut]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, C, D, E, G Output Phase Sequence: A, C, D, E, G

Phase Timing Summary	1 1 1 1 1 1				
Phase	Α	С	D	E	G
Phase Change Time (sec)	0	34	46	79	115
Green Time (sec)	28	6	27	30	19
Phase Time (sec)	34	12	33	36	25
Phase Split	24%	9%	24%	26%	18%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 8:05:52 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Site: 2 [Camden - Hurley PM - Fut]

中中 Network: N101 [PM Post Development]

Site Category: Genesiscare

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	Aver. Ba Ouer	ick of	Prop. Queued	Effective Ston	Aver. A	verag
		Total	HV	Total	HV				Vehicles D	istance		Rate	Cycles S	peed
Sout	nEast: C	amden F	ov beo	ven/n	· · ·⁄0	V/C	Sec		veh	, m				km/h
1	L2	295	10	295	10	0 160	56		0.2		0.00	0.53	0.00	
2	T1	0	11 1	200	11 1	0.100	55 5		0.3	2.2	0.00	0.53	0.00	35.0
3	R2	52	0.0	52	0.0	0.000	54.0		1.0	42.0	0.09	0.01	0.89	24.2
Annr	nach	356	11	356	1 1	0.173	14.0		1,0	12.8	0.87	0.72	0.87	18.8
	Jaon	550		500	1.1	0.173	14.0	L05 A	1.8	12.8	0.15	0.56	0.15	26,5
North	East; H	urley Stre	et				·. · ·				· · · ·		· · ·	[
4	L2	71	1.4	71	1.4	0.061	10.4	LOSA	0.7	5.1	0.34	0.63	0.34	40.0
5	T1	997	4.4	997	4.4	0.699	33,0	LOSC	13.0	94.6	0.84	0.74	0.84	21.9
Appro	bach	1068	4.2	1068	4.2	0.699	31.5	LOSC	13.0	94.6	0.81	0.74	0.81	22.8
North	West: C	amden F	Road	17 (1) 21 (1)		· · ·			· · ·	·			· · · ·	
7	L2	8	12.5	8	12.5	0.162	47.5	LOS D	1.1	8.5	0.91	0.70	0.97	31.6
8	T1	29	13.8	29	13.8	0.162	41.8	LOS C	1.1	8.5	0.91	0.70	0.97	28.0
9	R2	43	7.0	43	7.0	0.171	54.9	LOS D	1.5	11.4	0.86	0.72	0.86	21.7
Appro	bach	80	10.0	80	10.0	0.171	49.4	LOS D	1.5	11.4	0.89	0.71	0.91	25.0
South	West: H	ellicar R	oad	• •			1 - A	2 8 3	1				•	
10	L2	22	4.5	22	4.5	0.436	21.0	LOS B	13.6	99.4	0.65	0.60	0.78	41.7
11	T1	860	5.2	860	5.2	0.436	17.2	LOS B	13.6	99.4	0.71	0.64	0.80	35.9
12	R2	209	1.0	209	1.0	0.427	51.4	LOS D	8.4	59.5	1.00	0.92	1.13	12.6
Appro	bach	1091	4.4	1091	4.4	0.436	23.8	LOS B	13.6	99.4	0.77	0.70	0.86	29.8
All Ve	hicles	2595	4.0	2595	4.0	0.699	26.4	LOS B	13.6	99.4	0.70	0.69	0.74	26.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedes	strians						
Mov ID	Description	Demand Flow	Average Delay	Level of Ave Service P	erage Back o edestrian	of Queue Distance	Prop. Queued S	Effective Stop Rate
		ped/n	Sec		ped	m		
P1	SouthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P2	NorthEast Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P41	SouthWest Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P42	SouthWest Stage 2	53	36.2	LOS D	0.1	0.1	0.92	0.92
All Pe	destrians	211	57.3	LOS E		en de la composition de la composition La composition de la c	0.95	0.95

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2 [Camden - Hurley PM - Fut]

Site Category: Genesiscare Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: Leading Right Turn Reference Phase: Phase A Input Phase Sequence: A, B, D, F1 Output Phase Sequence: A, B, D, F1

Phase Timing Summary				
Phase	Α	В	D	F1
Phase Change Time (sec)	0	68	101	114
Green Time (sec)	62	27	7	20
Phase Time (sec)	68	33	13	26
Phase Split	49%	24%	9%	19%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRANSPORT AND TRAFFIC PLANNING ASSOCIATES | Processed: Tuesday, 19 October 2021 8:05:52 PM Project: T:\WORK21\21009 - GENESISCARE, CNR KELLICAR ROAD AND CAMDEN ROAD, CAMPBELLTOWN\MODEL\Model 19OCT21.sip8

Transport and Traffic Planning Associates

Appendix D

Turning Path Assessment

